题目内容
要得到函数y=sin(2x-
)的图象,可以将函数y=sin2x图象经何种变换得到( )
| π |
| 3 |
A、右移
| ||
B、右移
| ||
C、左移
| ||
D、左移
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据三角函数解析式之间的关系即可得到结论.
解答:
解:∵y=sin(2x-
)=sin2(x-
),
∴将函数y=sin2x图象向右平移
单位,即可,
故选:A
| π |
| 3 |
| π |
| 6 |
∴将函数y=sin2x图象向右平移
| π |
| 6 |
故选:A
点评:本题主要考查三角函数图象之间的关系,根据三角函数解析式之间的关系是解决本题的关键.
练习册系列答案
相关题目
在△ABC中,已知A=75°,B=45°,b=4,则c=( )
A、
| ||
B、2
| ||
C、4
| ||
| D、2 |
与向量
=(
-1,
+1)夹角角为
的单位向量是( )
| a |
| 3 |
| 3 |
| π |
| 4 |
A、(-
| ||||||||||||
B、(-
| ||||||||||||
C、(-
| ||||||||||||
D、(
|
为了得到函数y=sin(2x+2)的图象,只需把函数y=sin2x的图象上所有的点( )
| A、向左平行移动2个单位长度 |
| B、向右平行移动2个单位长度 |
| C、向左平行移动1个单位长度 |
| D、向右平行移动1个单位长度 |
在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是( )
| A、18 | B、19 | C、16 | D、17 |
下列有关命题的说法正确的是( )
| A、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” |
| B、“x=-1”是“x2-5x-6=0”的必要不充分条件 |
| C、命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” |
| D、命题“若x=y,则cosx=cosy”的逆否命题为真命题 |