题目内容
6.已知△ABC是边长为$2\sqrt{3}$的正三角形,EF为△ABC的外接圆O的一条直径,M为△ABC的边上的动点,则$\overrightarrow{ME}•\overrightarrow{FM}$的最大值为( )| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 首先,以边AB所在直线为x轴,以其中点为坐标原点建立平面直角坐标系,然后,对点M的取值情况分三种情形进行讨论,然后运用数量积的坐标表示和二次函数的最值求法,求解其最大值.
解答 解:如图所示,以边AB所在直线为x轴,![]()
以其中点为坐标原点建立平面直角坐标系,
∵该正三角形ABC的边长为2$\sqrt{3}$,
∴A(-$\sqrt{3}$,0),B($\sqrt{3}$,0),C(0,3),
E(0,-1),F(0,3),
当点M在边AB上时,设点M(x0,0),
则-$\sqrt{3}$≤x0≤$\sqrt{3}$,
∵$\overrightarrow{ME}$=(-x0,-1),$\overrightarrow{FM}$=(x0,-3),
∴$\overrightarrow{ME}$•$\overrightarrow{FM}$=-x02+3,
∵-$\sqrt{3}$≤x0≤$\sqrt{3}$,
∴$\overrightarrow{ME}$•$\overrightarrow{FM}$的最大值为3,
当点M在边BC上时,
∵直线BC的斜率为-$\sqrt{3}$,
∴直线BC的方程为:$\sqrt{3}$x+y-3=0,
设点M(x0,3-$\sqrt{3}$x0),则0≤x0≤$\sqrt{3}$,
∵$\overrightarrow{ME}$=(-x0,$\sqrt{3}$x0-4),$\overrightarrow{FM}$=(x0,$\sqrt{3}$x0),
∴$\overrightarrow{ME}$•$\overrightarrow{FM}$=2x02-4$\sqrt{3}$x0,
∵0≤x0≤$\sqrt{3}$,
∴$\overrightarrow{ME}$•$\overrightarrow{FM}$的最大值为0,
当点M在边AC上时,
∵直线AC的斜率为$\sqrt{3}$,
∴直线AC的方程为:$\sqrt{3}$x-y+3=0,
设点M(x0,3+$\sqrt{3}$x0),则-$\sqrt{3}$≤x0≤0,
∵$\overrightarrow{ME}$=(-x0,-$\sqrt{3}$x0-4),$\overrightarrow{FM}$=(x0,$\sqrt{3}$x0),
∴$\overrightarrow{ME}$•$\overrightarrow{FM}$=-4x02-4$\sqrt{3}$x0,
∵-$\sqrt{3}$≤x0≤0,
∴$\overrightarrow{ME}$•$\overrightarrow{FM}$的最大值为3,
综上,最大值为3,
故选:A.
点评 本题重点考查了平面向量的基本运算、数量积的运算性质等知识,考查分类讨论的思想方法,属于中档题.
| A. | [-4,5] | B. | [-5,5] | C. | [4,5] | D. | [-5,4] |
| A. | -3 | B. | 21 | C. | 3 | D. | -21 |
| A. | $[\frac{1}{14},\frac{1}{3})$ | B. | $(\frac{1}{14},\frac{1}{3}]$ | C. | $(\frac{1}{3},2]$ | D. | $[\frac{1}{3},2)$ |
| A. | (0,1) | B. | (-1,0) | C. | (-2,-1)∪(-1,0) | D. | (-2,-1) |
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{10}$ |