题目内容
16.设复数z=-2+i(i是虚数单位),z的共轭复数为$\overline{z}$,则|(1+z)•$\overline{z}$|等于( )| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | 5$\sqrt{2}$ | D. | $\sqrt{10}$ |
分析 求出z的共轭复数,代入|(1+z)•$\overline{z}$,求出其模即可.
解答 解:∵z=-2+i,∴$\overline{z}$=-2-i,
∴|(1+z)•$\overline{z}$|=|(1-2+i)•(2-i)|=|-1+3i|=$\sqrt{1+9}$=$\sqrt{10}$,
故选:D.
点评 本题考查了复数求模问题,考查共轭复数问题,是一道基础题.
练习册系列答案
相关题目
7.已知集合A={x|(x-3)(x+1)<0},B={x|x>1},则A∩B=( )
| A. | {x|x>3} | B. | {x|x>1} | C. | {x|-1<x<3} | D. | {x|1<x<3} |
4.
一个几何体的三视图如图所示,则该几何体的体积为( )
| A. | 2π+$\frac{\sqrt{3}}{3}$ | B. | π+$\frac{\sqrt{3}}{3}$ | C. | 2π+$\frac{\sqrt{3}}{3}$ | D. | π+$\sqrt{3}$ |
11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且其图象向右平移$\frac{π}{7}$个单位后得到函数g(x)=sinωx的图象,则φ等于( )
| A. | -$\frac{π}{14}$ | B. | -$\frac{π}{7}$ | C. | $\frac{π}{14}$ | D. | $\frac{π}{7}$ |
1.设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n∈Z},则( )
| A. | M=P | B. | P≠M | C. | N∩P≠∅ | D. | M∩N≠∅ |
6.已知${log_a}b=-1,\;{2^a}>3,\;c>1$,设$x=-{log_b}\sqrt{a}$,y=logbc,$z=\frac{1}{3}a$,则x,y,z的大小关系正确的是( )
| A. | z>x>y | B. | z>y>x | C. | x>y>z | D. | x>z>y |