题目内容
1.计算:(1)$\frac{-2\sqrt{3}i+1}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1+i}$)2000+$\frac{1+i}{3-i}$;
(2)$\frac{{5{{(4+i)}^2}}}{i(2+i)}+\frac{2}{{{{(1-i)}^2}}}$.
分析 根据复数的运算法则计算即可.
解答 解:(1)原式=$\frac{(-2\sqrt{3}+i)(1-2\sqrt{3}i)}{(1+2\sqrt{3}i)(1-2\sqrt{3}i)}$+$(\frac{2}{2i})^{1000}$+$\frac{(1+i)(3+i)}{(3-i)(3+i)}$=i+1+$\frac{1+2i}{5}$=$\frac{6}{5}$+$\frac{7}{5}$i
(2)原式=$\frac{5(15+8i)}{2i-1}$+$\frac{2}{-2i}$=$\frac{5(15+8i)(2i+1)}{(2i-1)(2i+1)}$+i=38i-1+i=-1+39i
点评 本题考查了复数的混合运算属于基础题.
练习册系列答案
相关题目
20.若函数f(x)=-x-log2$\frac{2+ax}{2-x}$为奇函数,则使不等式f($\frac{1}{m}$)+log26<0成立的m的取值范围是( )
| A. | (-∞,1) | B. | ($\frac{1}{2}$,1) | C. | (-∞,0)∪(0,1) | D. | (1,+∞) |
12.在△ABC中,角A,B,C所对的边分别为a,b,c,若ac=$\frac{1}{4}$b2,sin A+sin C=psin B,且B为锐角,则实数p的取值范围是( )
| A. | (1,$\sqrt{2}$) | B. | ($\frac{\sqrt{6}}{2}$,$\sqrt{2}$) | C. | ($\frac{\sqrt{6}}{2}$,$\sqrt{3}$) | D. | (1,$\sqrt{3}$) |
9.平面直角坐标系中,在由x轴、x=$\frac{π}{3}$、x=$\frac{5π}{3}$和y=2所围成的矩形中任取一点,满足不等关系y≤1-sin3x的概率是( )
| A. | $\frac{4π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
16.设函数f(x)=$\left\{\begin{array}{l}{-x+λ,x<1}\\{{2}^{x},x≥1}\end{array}\right.$(λ∈R),若对任意的a∈R都有f(f(a))=2f(a)成立,则λ的取值范围是( )
| A. | (0,2] | B. | [0,2] | C. | (-∞,2) | D. | [2,+∞) |
13.设变量x,y满足线性约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x+y≥0\\ x≤3\end{array}\right.$则目标函数z=2x+4y的最小值是( )
| A. | 6 | B. | -2 | C. | 4 | D. | -6 |
10.已知函数f(x)=2sinxcosx-sin2x+1,当x=θ时函数y=f(x)取得最小值,则$\frac{sin2θ+cos2θ}{sin2θ-cos2θ}$=( )
| A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且其图象向右平移$\frac{π}{7}$个单位后得到函数g(x)=sinωx的图象,则φ等于( )
| A. | -$\frac{π}{14}$ | B. | -$\frac{π}{7}$ | C. | $\frac{π}{14}$ | D. | $\frac{π}{7}$ |