题目内容

18.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,对于任意x1∈R且x1≠0,均存在唯一实数x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4个不相等的实数根,则a的取值范围是(  )
A.(0,1)B.(-1,0)C.(-2,-1)∪(-1,0)D.(-2,-1)

分析 根据f(x)在[0,+∞)上的单调性和值域结合函数性质判断f(x)在(-∞,0)上的单调性和值域,得出a,b,m的关系,根据|f(x)|=f(m)有4个不相等的实数根可知0<f(m)<f(0),解出m即可.

解答 解:由题意可知f(x)在[0,+∞)上单调递增,值域为[m,+∞),
∵对于任意x1∈R且x1≠0,均存在唯一实数x2,使得f(x2)=f(x1),
∴f(x)在(-∞,0)上是减函数,值域为(m,+∞),
∴a<0,b=m.
∵|f(x)|=f(m)有4个不相等的实数根,
∴0<f(m)<-m,又m<-1,
∴0<am+b<-m,即0<(a+1)m<-m,
∴-2<a<-1.
故选D.

点评 本题考查了函数的性质应用,函数图象的意义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网