题目内容
4.集合A={x|x2-5x+4<0},B={x||a-x|<1},则“B⊆A”是“a∈(2,3)”的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 分别求出关于A、B的不等式,根据集合的包含关系判断即可.
解答 解:A={x|x2-5x+4<0}=(1,4),
B={x||a-x|<1}=(a-1,a+1),
若“B⊆A”,则$\left\{\begin{array}{l}{a-1≥1}\\{a+1≤4}\end{array}\right.$,
解得:2≤a≤3,
故“B⊆A”是“a∈(2,3)”的必要不充分条件,
故选:B.
点评 本题考查了充分必要条件,考查集合的包含关系,是一道基础题.
练习册系列答案
相关题目
19.如图,已知一个八面体的各条棱长均为1,四边形ABCD 为正方形,则下列命题中的假命题是( )
| A. | 不平行的两条棱所在的直线所成的角是60o或90o | |
| B. | 四边形AECF是正方形 | |
| C. | 点A到平面BCE的距离为$\frac{\sqrt{6}}{3}$ | |
| D. | 该八面体的顶点不会在同一个球面上. |
9.已知复数(1+i)z-2=i,则复数z在复平面上对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
14.已知a.b.c.d成等比数列,且曲线y=x2-2x+3的顶点是(b,c),则a+d等于( )
| A. | 3 | B. | 2 | C. | $\frac{9}{2}$ | D. | -2 |