题目内容

16.如图,圆O1和圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1和圆O2的切线PM、PN(M、N为切点),使得|PM|=$\sqrt{2}$|PN|,试建立适当平面直角坐标系,求动点P的轨迹方程.

分析 建立直角坐标系,设P点坐标,列方程,化简,即可得到结果.

解答 解:以O1O2的中点O为原点,O1O2所在的直线为x轴,建立平面直角坐标系,则O1(-2,0),O2(2,0),
由已知|PM|=$\sqrt{2}$|PN|,得PM2=2PN2
因为两圆的半径均为1,所以PO12-1=2(PO22-1).
设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],
即(x-6)2+y2=33,
所以所求轨迹方程为(x-6)2+y2=33.

点评 本题是典型的求轨迹方程的方法.考查学生的计算能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网