题目内容
13.求下列函数f(x)的解析式.(1)已知f(1-x)=2x2-x+1,求f(x);
(2)已知一次函数f(x)满足f(f(x))=4x-1,求f(x).
分析 (1)根据换元法求出f(x)的解析式即可;(2)根据待定系数法求出f(x)的解析式即可.
解答 解:(1)设t=1-x,则x=1-t,
∴f(t)=2(1-t)2-(1-t)+1=2t2-3t+2,
∴f(x)=2x2-3x+2.
(2)∵f(x)是一次函数,
∴设f(x)=ax+b(a≠0),
则 f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b.
∵f(f(x))=4x-1,
∴$\left\{\begin{array}{l}{{a}^{2}=4}\\{ab+b=-1}\end{array}\right.$解得$\left\{\begin{array}{l}{a=2}\\{b=-\frac{1}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{a=-2}\\{b=1}\end{array}\right.$
∴f(x)=2x-$\frac{1}{3}$或f(x)=-2x+1.
点评 本题考查了求函数的解析式问题,换元法和待定系数法是常用方法,本题是一道中档题.
练习册系列答案
相关题目
3.已知集合A={3,log2(a2+3a)},B={a,b,1},若A∩B={2},则集合A∪B=( )
| A. | {1,2,3,4} | B. | {-4,1,2,3} | C. | {1,2,3} | D. | {-1,4,2} |
4.集合A={x|x2-5x+4<0},B={x||a-x|<1},则“B⊆A”是“a∈(2,3)”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
8.设集合M={x|x2-2x>0},集合N={0,1,2,3,4},则(∁RM)∩N等于( )
| A. | {4} | B. | {3,4} | C. | {0,1,2} | D. | {0,1,2,3,4} |
18.如果A={x>-1},那么( )
| A. | 0⊆A | B. | {0}?A | C. | ∅?A | D. | {0}⊆A |
5.已知集合A={x|log2x<4},集合B={x||x|≤2},则A∩B=( )
| A. | (0,2] | B. | [0,2] | C. | [-2,2] | D. | (-2,2) |
2.对于函数f(x)与g(x),若区间[a,b]上|f(x)-g(x)|的最大值称为f(x)与g(x)的“绝对差”,则f(x)=$\frac{1}{x+1}$,g(x)=$\frac{2}{9}$x2-x在[1,4]上的“绝对差”为( )
| A. | $\frac{271}{72}$ | B. | $\frac{23}{18}$ | C. | $\frac{29}{45}$ | D. | $\frac{13}{9}$ |
3.△ABC中,a、b、c分别是三内角A、B、C的对边,且a=4,b+c=5,tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanA•tanB,则△ABC的面积为( )
| A. | $\frac{3}{2}$ | B. | $3\sqrt{3}$ | C. | $\frac{{3\sqrt{3}}}{2}$ | D. | $\frac{5}{2}$ |