题目内容

8.设a≥b>0,分别用综合法和分析法证明:3a3+2b3≥3a2b+2ab2

分析 综合法:利用作差法分析符号,推出结果即可.
分析法:利用分析法的证明步骤,找出不等式成立的充要条件即可.

解答 证明:综合法:3a3+2b3-(3a2b+2ab2)=3a2(a-b)+2b2(b-a)=(3a2-2b2)(a-b).
因为a≥b>0,所以a-b≥0,3a2-2b2>0,从而(3a2-2b2)(a-b)≥0,
所以3a3+2b3≥3a2b+2ab2.…(6分)
分析法:要证3a3+2b3≥3a2b+2ab2,只需证3a2(a-b)-2b2(a-b)≥0,
只需证(3a2-2b2)(a-b)≥0,∵a≥b>0.∴a-b≥0,
3a2-2b2>2a2-2b2≥0,
即:3a3+2b3≥3a2b+2ab2…(6分)

点评 本题考查不等式的证明,分析法以及综合法的应用,考查逻辑推理能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网