题目内容

14.如图,某人为测量河对岸塔AB的高,先在塔底B的正东方向上的河岸上选一点C,在点C处测得点A的仰角为45°,并在点C北偏东15°方向的河岸上选定一点D,测得CD的距离为20米,∠BDC=30°,则塔AB的高是(  )
A.10米B.$10\sqrt{2}$米C.$10\sqrt{3}$米D.$20\sqrt{3}$米

分析 设塔高为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=45°,AB=x,从而有BC=x,在△BCD中,CD=20,∠BCD=105°,∠BDC=30°,得到∠CBD=45°,由正弦定理可求 BC,从而可求x即塔高.

解答 解:设塔高为x米,根据题意可知在△ABC中,∠ABC=90°,∠ACB=45°,AB=x,
从而有BC=x,AC=$\sqrt{2}$x,
在△BCD中,CD=20,∠BCD=90°+15°=105°,∠BDC=30°,∠CBD=45°
由正弦定理可得,$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$即$\frac{x}{\frac{1}{2}}=\frac{20}{\frac{\sqrt{2}}{2}}$
可得,x=10$\sqrt{2}$;
所以塔AB的高是10$\sqrt{2}$米;
故选B.

点评 本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网