题目内容
9.在△ABC中,AB=2,AC=3,A=60°,则BC=( )| A. | $\sqrt{6}$ | B. | $\sqrt{7}$ | C. | $\sqrt{19}$ | D. | 2$\sqrt{5}$ |
分析 利用余弦定理即可得出.
解答 解:由余弦定理可得:BC2=22+32-2×2×3×cos60°=7,
解得BC=$\sqrt{7}$.
故选:B.
点评 本题考查了余弦定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.直线$\frac{x}{3}$-$\frac{y}{4}$=1在x轴上的截距是( )
| A. | -3 | B. | 3 | C. | -4 | D. | 4 |
20.
如图,在正方体ABCD-A1B1C1D1中,点P在正方体表面运动,如果${S_{△AB{D_1}}}={S_△}_{PB{D_1}}$,那么这样的点P共有( )
| A. | 2个 | B. | 4个 | C. | 6个 | D. | 无数个 |
17.已知m∈N*,则乘积m(m+1)(m+2)…(m+15)可表示为( )
| A. | A${\;}_{m}^{15}$ | B. | A${\;}_{m}^{16}$ | C. | A${\;}_{m+15}^{15}$ | D. | A${\;}_{m+15}^{16}$ |
4.复数1-$\frac{i}{3+i}$等于( )
| A. | $\frac{9}{10}$-$\frac{3}{10}$i | B. | $\frac{1}{10}$+$\frac{3}{10}$i | C. | $\frac{9}{10}$+$\frac{3}{10}$i | D. | $\frac{1}{10}$-$\frac{3}{10}$i |
14.
如图,某人为测量河对岸塔AB的高,先在塔底B的正东方向上的河岸上选一点C,在点C处测得点A的仰角为45°,并在点C北偏东15°方向的河岸上选定一点D,测得CD的距离为20米,∠BDC=30°,则塔AB的高是( )
| A. | 10米 | B. | $10\sqrt{2}$米 | C. | $10\sqrt{3}$米 | D. | $20\sqrt{3}$米 |
1.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若仅有两个整数x0,使得f(x0)<0,则a的取值范围是( )
| A. | [-$\frac{2}{e}$,1] | B. | [$\frac{7}{3{e}^{2}}$,1] | C. | [0,$\frac{2}{e}$] | D. | [$\frac{7}{3{e}^{2}}$,$\frac{2}{e}$] |