题目内容

已知正三棱锥(底面是正三角形,从顶点向底面作垂线,垂足是底面中心得三棱锥)
P-ABC的侧棱长为10cm,侧面积为144cm2,求棱锥的底面边长和高.
考点:点、线、面间的距离计算
专题:空间位置关系与距离
分析:设斜高为xcm,则x
100-x2
=144÷3
,由此能求出棱锥的底面边长和高.
解答: 解:设斜高为xcm,则x
100-x2
=144÷3

解得x2=36或x2=64,∴x=6cm或x=8cm,
∴底面边长为2
100-x2
=16
cm或2
100-x2
=12cm,
OC1=
2
3
×
3
2
×16=
16
3
3
cm

OC2=
2
3
×
3
2
×12=4
3
cm

在Rt△SOC中,SO1=
SC2-O
C
2
1
=
100-
16×16
3
=
2
33
3
cm
SO2=
SC2-O
C
2
2
=
100-48
=2
13
cm

故该棱锥的底面边长为16cm,高为
2
33
3
cm,
或底面边长为12cm,高为2
13
cm.
点评:本题考查棱锥的底面边长和高的求法,是中档题,解题时要认真审题,注意合理地化空间问题为平面问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网