题目内容
已知数列{an}的前n项和为Sn=2-(
+1)an(n∈N+).
(Ⅰ)求证:数列{
}是等比数列;
(Ⅱ)设数列{2n+1an+1}的前n项和为Tn,求
+
+
+…+
.
| 2 |
| n |
(Ⅰ)求证:数列{
| an |
| n |
(Ⅱ)设数列{2n+1an+1}的前n项和为Tn,求
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| T3 |
| 1 |
| Tn |
考点:数列的求和,等比关系的确定
专题:综合题,等差数列与等比数列
分析:(Ⅰ)再写一式,两式相减,即可证明数列{
}是等比数列;
(Ⅱ)求出数列{2n+1an+1}的前n项和为Tn,利用裂项法求
+
+
+…+
.
| an |
| n |
(Ⅱ)求出数列{2n+1an+1}的前n项和为Tn,利用裂项法求
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| T3 |
| 1 |
| Tn |
解答:
(Ⅰ)证明:∵Sn=2-(
+1)an,
∴n≥2时,Sn-1=2-(
+1)an-1,
两式相减,整理可得
=
•
,
n=1时,a1=
,
∴数列{
}是以
为首项,
为公比的等比数列;
(Ⅱ)解:由(Ⅰ)知
=
,
∴2n+1an+1=2n+1,
∴Tn=
=n(n+2),
∴
=
(
-
),
∴
+
+
+…+
=
(1-
+
-
+…+
-
)=
(1+
-
-
)=
-
.
| 2 |
| n |
∴n≥2时,Sn-1=2-(
| 2 |
| n-1 |
两式相减,整理可得
| an |
| n |
| 1 |
| 2 |
| an-1 |
| n-1 |
n=1时,a1=
| 1 |
| 2 |
∴数列{
| an |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)解:由(Ⅰ)知
| an |
| n |
| 1 |
| 2n |
∴2n+1an+1=2n+1,
∴Tn=
| n(3+2n+1) |
| 2 |
∴
| 1 |
| Tn |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴
| 1 |
| T1 |
| 1 |
| T2 |
| 1 |
| T3 |
| 1 |
| Tn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
点评:本题考查等比数列的证明,考查数列的求和,考查裂项法的运用,属于中档题.
练习册系列答案
相关题目