题目内容
设α,β是两个不同的平面,l是一条直线,以下命题:①若l⊥α,α⊥β,则l?β,②若l∥α,α∥β,则l?β③若l⊥α,α∥β,则l⊥β,④若l∥α,α⊥β,则l⊥β 其中正确命题的个数是( )
| A、1 | B、2 | C、3 | D、0 |
考点:空间中直线与平面之间的位置关系
专题:阅读型,空间位置关系与距离
分析:①可举反例,l∥β,即可判断;②由线面平行的性质和面面平行的性质,即可判断;③运用线面垂直的判定,和面面平行的性质,即可判断;④由线面平行的性质和面面垂直的性质,即可判断.
解答:
解:①若l⊥α,α⊥β,则l?β,或l∥β,故①错;
②若l∥α,α∥β,则l?β或l∥β,故②错;
③若l⊥α,α∥β,则过l作两个平面M,N,使平面M与α,β分别交于m1,m2,平面N与平面α,β交于n1,n2,则由α∥β得到m1∥m2,n1∥n2,由l⊥α,得l⊥m1,l⊥n1,故l⊥m2,l⊥n2,故l⊥β,故③正确;
④若l∥α,α⊥β,则l⊥β 或l∥β,故④错.
故选:A.
②若l∥α,α∥β,则l?β或l∥β,故②错;
③若l⊥α,α∥β,则过l作两个平面M,N,使平面M与α,β分别交于m1,m2,平面N与平面α,β交于n1,n2,则由α∥β得到m1∥m2,n1∥n2,由l⊥α,得l⊥m1,l⊥n1,故l⊥m2,l⊥n2,故l⊥β,故③正确;
④若l∥α,α⊥β,则l⊥β 或l∥β,故④错.
故选:A.
点评:本题主要考查空间直线与平面的位置关系,考查线面平行与垂直的判定和性质、面面平行与垂直的判断和性质,熟记这些是迅速解题的关键.
练习册系列答案
相关题目
下列各式的值等于
的是( )
| 1 |
| 4 |
A、2cos2
| ||
| B、1-2sin275° | ||
| C、sin15°cos15° | ||
D、
|
在△ABC中,若sin(A+B+C)=sin(A-B+C),则△ABC的形状一定是( )
| A、等腰三角形 |
| B、直角三角形 |
| C、等腰或直角三角形 |
| D、等腰直角三角形 |
已知|
|=4,|
|=3,且(
+k
)⊥(
-k
),则k等于( )
| a |
| b |
| a |
| b |
| a |
| b |
A、±
| ||
B、±
| ||
C、±
| ||
D、±
|
已知a,b为不相等的两正数,且a3-b3=a2-b2,则a+b的取值范围是( )
A、(0,
| ||
B、(1,
| ||
C、(
| ||
| D、(1,2) |
设甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )
A、20
| ||||||||
B、10
| ||||||||
C、10(
| ||||||||
D、
|
如图是5名学生一次数学测试成绩的茎叶图,则这5名学生该次测试成绩的方差为( )

| A、20 | B、21.2 |
| C、106 | D、127 |