题目内容
4.直线2x+11y+16=0关于P(0,1)对称的直线方程是( )| A. | 2x+11y+38=0 | B. | 2x+11y-38=0 | C. | 2x-11y-38=0 | D. | 2x-11y+16=0 |
分析 设原直线上的任一点为A(a,b)它关于P的对称点为B(x,y),则AB的中点为P(0,1),利用中点坐标公式求出a,b,再把(a,b)代入直线2x+11y+16=0,化简即得对称直线方程.
解答 解:设原直线上的任一点为A(a,b)
它关于P的对称点为B(x,y)
则AB的中点为P(0,1),
∴$\left\{\begin{array}{l}{\frac{a+x}{2}=0}\\{\frac{b+y}{2}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-x}\\{b=2-y}\end{array}\right.$,
将(a,b)代入直线2x+11y+16=0,得:2(-x)+11(2-y)+16=0
化简即得对称直线方程为:2x+11y-38=0.
故选:B.
点评 本题考查与已知直线对称的直线方程的求法,考查直线方程、中点坐标公式等知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
3.某中学教务处采用系统抽样方法,从学校高一年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是( )
| A. | 177 | B. | 417 | C. | 157 | D. | 367 |
4.已知下列各式:①f(|x|+1)=x2+1; ②$f(\frac{1}{{{x^2}+1}})=x$;③f(x2-2x)=|x|; ④f(|x|)=3x+3-x.其中存在函数f(x)对任意的x∈R都成立的是( )
| A. | ①④ | B. | ③④ | C. | ①② | D. | ①③ |
1.已知函数f(x)的定义域为[0,2],则函数g(x)=$\frac{f(2x)}{x-1}$的定义域为( )
| A. | [0,1)∪(1,4] | B. | [0,1) | C. | (-∞,1)∪(1,+∞) | D. | [0,1)∪(1,2] |
8.
若函数y=Asin(ωx+φ)$({A>0,ω>0,|φ|<\frac{π}{2}})$在一个周期内的图象如图所示,且在$y轴上的截距为\sqrt{2}$,M,N分别是这段图象的最高点和最低点,
则$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影为( )
则$\overrightarrow{ON}在\overrightarrow{OM}$方向上的投影为( )
| A. | $\frac{{\sqrt{29}}}{29}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | -$\frac{{\sqrt{29}}}{29}$ | D. | $-\frac{{\sqrt{5}}}{5}$ |
13.一组数据如表:
(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| x | 1 | 2 | 3 | 4 | 5 |
| y | 1.3 | 1.9 | 2.5 | 2.7 | 3.6 |
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)