题目内容

6.已知A={(x,y)|x2+y2≤π2},B是曲线y=sinx与x轴围成的封闭区域,若向区域A内随机投入一点M,则点M落入区域B的概率为(  )
A.$\frac{2}{π}$B.$\frac{4}{π}$C.$\frac{2}{{π}^{3}}$D.$\frac{4}{{π}^{3}}$

分析 先求构成试验的全部区域为圆内的区域的面积,再利用积分知识可得正弦曲线y=sinx与x轴围成的区域记为M的面积,代入几何概率的计算公式可求.

解答 解:构成试验的全部区域为圆内的区域,面积为π3,正弦曲线y=sinx与x轴围成的区域记为M,
根据图形的对称性得:面积为S=2∫0πsinxdx=-2cosx|0π=4,
由几何概率的计算公式可得,随机往圆O内投一个点A,则点A落在区域M内的概率P=$\frac{4}{{π}^{3}}$,
故选:D.

点评 本题主要考查了利用积分求解曲面的面积,几何概率的计算公式的运用,要求熟练掌握函数的积分公式和几何概型的概率公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网