题目内容

7.正四面体ABCD棱长为$\sqrt{2}$,E,F,G分别是AB,AD,DC的中点,则$\overrightarrow{GE}$•$\overrightarrow{GF}$=$\frac{1}{2}$.

分析 $\overrightarrow{GE}$=$\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{BE}$,$\overrightarrow{GF}$=$\frac{1}{2}\overrightarrow{CA}$,然后代入数量级公式计算.

解答 解:$\overrightarrow{GE}$=$\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{BE}$,$\overrightarrow{GF}$=$\frac{1}{2}\overrightarrow{CA}$,
∴$\overrightarrow{GE}•\overrightarrow{GF}$=$\frac{1}{2}$($\overrightarrow{GC}+\overrightarrow{CB}+\overrightarrow{BE}$)•$\overrightarrow{CA}$=$\frac{1}{2}$($\overrightarrow{GC}•\overrightarrow{CA}+\overrightarrow{CB}•\overrightarrow{CA}+\overrightarrow{BE}•\overrightarrow{CA}$)
=$\frac{1}{2}$($\frac{\sqrt{2}}{2}$×$\sqrt{2}$×cos120°+$\sqrt{2}×\sqrt{2}×cos60°$+$\frac{\sqrt{2}}{2}$×$\sqrt{2}$×cos60°)
=$\frac{1}{2}$(-$\frac{1}{2}$+1+$\frac{1}{2}$)=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了平面向量的数量级运算,将向量转化为共面向量的乘积是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网