题目内容
在复平面内,复数-2+3i对应的点位于( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
考点:复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:可知复数对应的点为(-2,3),可得答案.
解答:
解:由复数的几何意义可知:
复数-2+3i对应的点为(-2,3)在第二象限,
故选:B
复数-2+3i对应的点为(-2,3)在第二象限,
故选:B
点评:本题考查复数的代数形式的几何意义,属基础题.
练习册系列答案
相关题目
函数y=cos2x+2是( )
| A、最小正周期为π的偶函数 |
| B、最小正周期为π的奇函数 |
| C、最小正周期为2π的偶函数 |
| D、最小正周期为2π的奇函数 |
已知f(x)=cosx,则f′(
)=( )
| π |
| 2 |
| A、1 | B、0 | C、-1 | D、2 |
直线l过点P(1,2)且倾斜角是直线x-2y=0倾斜角的2倍,则直线l的方程是( )
| A、3x-4y+5=0 |
| B、x-y=0 |
| C、4x-3y+2=0 |
| D、2x-y=0 |
若函数y=2cos2(ωx-
)(ω>0)的最小正周期T=
,则ω=( )
| π |
| 2 |
| π |
| 2 |
A、
| ||
B、
| ||
| C、1 | ||
| D、2 |
已知以原点O为圆心的单位圆上有一质点P,它从初始位置P0(
,
)开始,按逆时针方向以角速度1rad/s做圆周运动.则点P的纵坐标y关于时间t的函数关系为( )
| 1 |
| 2 |
| ||
| 2 |
A、y=sin(t+
| ||
B、y=sin(t+
| ||
C、y=cos(t+
| ||
D、y=cos(t+
|
直线
+
=1与两坐标轴围成的三角形的周长为( )
| x |
| 3 |
| y |
| 4 |
| A、6 | B、7 | C、12 | D、14 |