题目内容
13.已知函数f(x)=|x+a|.(1)若a=2,解关于x的不等式f(x)+f(x-3)≥5;
(2)若关于x的不等式f(x)-f(x+2)+4≥|1-3m|恒成立,求实数m的取值范围.
分析 (1)不等式f(x)+f(x-3)≥5可化为;|x+2|+|x-1|≥5.⇒$\left\{\begin{array}{l}{x<-2}\\{-2x-1≥5}\end{array}\right.$或$\left\{\begin{array}{l}{-2≤x≤1}\\{3≥5}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{2x+1≥5}\end{array}\right.$,即可求解;
(2)关于x的不等式f(x)-f(x+2)+4≥|1-3m|恒成立?|x+a|-|x+2+a|+4≥|1-3m|恒成立.即2+4≥|1-3m|⇒$\left\{\begin{array}{l}{1-3m≥-2}\\{1-3m≤2}\end{array}\right.$⇒-$\frac{1}{3}$≤m≤1.
解答 解:(1)当a=2,关于x的不等式f(x)+f(x-3)≥5可化为;|x+2|+|x-1|≥5.
⇒$\left\{\begin{array}{l}{x<-2}\\{-2x-1≥5}\end{array}\right.$或$\left\{\begin{array}{l}{-2≤x≤1}\\{3≥5}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{2x+1≥5}\end{array}\right.$,
⇒x≤-3或∅或x≥2
故不等式的解集为[2,+∞)∪(-∞,-3].
(2)关于x的不等式f(x)-f(x+2)+4≥|1-3m|恒成立?|x+a|-|x+2+a|+4≥|1-3m|恒成立.
因为-2≤|x+a|-|x+2+a|≤2,
∴-2+4≥|1-3m|⇒$\left\{\begin{array}{l}{1-3m≥-2}\\{1-3m≤2}\end{array}\right.$⇒-$\frac{1}{3}$≤m≤1.
∴实数m的取值范围为[-$\frac{1}{3}$,1]
点评 本题考查了绝对值不等式的解法,考查了含参不等式的恒成立问题的处理方法,属于中档题,
| A. | $[\frac{1}{2},+∞)$ | B. | [2,+∞) | C. | $(0,\frac{1}{2}]$ | D. | (0,2] |
| A. | $\frac{1}{1008}$ | B. | $\frac{1}{2016}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |