题目内容

12.若-$\frac{π}{2}$<a<$\frac{π}{2}$,sinα=$\frac{3}{5}$,则cot2α=$\frac{7}{24}$.

分析 根据α的取值范围求得cosα=$\frac{4}{5}$,由同角三角函数关系得到tanα=$\frac{3}{4}$,结合倍角公式进行解答.

解答 解:∵-$\frac{π}{2}$<a<$\frac{π}{2}$,sinα=$\frac{3}{5}$,
∴cosα=$\frac{4}{5}$,
∴tanα=$\frac{3}{4}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×\frac{3}{4}}{1-(\frac{3}{4})^{2}}$=$\frac{24}{7}$,
∴cot2α=$\frac{1}{tan2α}$=$\frac{7}{24}$.
故答案是:$\frac{7}{24}$.

点评 本题主要考察了同角三角函数关系式和二倍角的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网