题目内容

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为$2\sqrt{5}$,且双曲线的一条渐近线方程为x-2y=0,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

分析 利用双曲线的焦距以及渐近线方程,推出a,b的方程,求解即可得到双曲线方程.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为$2\sqrt{5}$,可得c=$\sqrt{5}$,即a2+b2=5,…①
双曲线的一条渐近线方程为x-2y=0,可得a=2b,…②,
解①②可得a=2,b=1.
所求的双曲线方程为:$\frac{x^2}{4}-{y^2}=1$.
故选:A.

点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网