题目内容

已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)若a<0,求f(x)的单调区间;
(Ⅱ)若a=-1,函数f(x)的图象与函数g(x)=
1
3
x3+
1
2
x2+m的图象有3个不同的交点,求实数m的取值范围.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:计算题,导数的综合应用
分析:(Ⅰ)求导f′(x)=(ax2+x-1)ex+(2ax+1)ex=x(ax+2a+1)ex,讨论a的取值范围,从而确定导数的正负,以确定函数的单调区间;
(Ⅱ)若a=-1,f(x)=(-x2+x-1)ex在(-∞,-1]]上单调递减,在[-1,0]单调递增,在[0,+∞)上单调递减,从而求得f(x)在x=-1处取得极小值f(-1)=-
3
e
,在x=0处取得极大值f(0)=-1.再由g(x)=
1
3
x3+
1
2
x2+m可求得g(x)在x=-1处取得极大值g(-1)=
1
6
+m,在x=0处取得极小值g(0)=m;从而将函数f(x)的图象与函数g(x)=
1
3
x3+
1
2
x2+m的图象有3个不同的交点化为
f(-1)<g(-1)
f(0)>g(0)
,从而求实数m的取值范围.
解答: 解:(Ⅰ)f′(x)=(ax2+x-1)ex+(2ax+1)ex=x(ax+2a+1)ex
①若-
1
2
<a<0,当x<0或x>-
2a+1
a
时,f′(x)<0;当0<x<-
2a+1
a
时,f′(x)>0.
∴f(x)的单调递减区间为(-∞,0],[-
2a+1
a
,+∞);单调递增区间为[0,-
2a+1
a
].
②若a=-
1
2
,f′(x)=-
1
2
x2ex≤0,
∴f(x)的单调递减区间为R.
③若a<-
1
2
,当x<-
2a+1
a
或x>0时,f′(x)<0;当-
2a+1
a
<x<0时,f′(x)>0.
∴f(x)的单调递减区间为(-∞,-
2a+1
a
],[0,+∞);单调递增区间为[-
2a+1
a
,0].
(Ⅱ)由(1)知,f(x)=(-x2+x-1)ex在(-∞,-1]]上单调递减,在[-1,0]单调递增,在[0,+∞)上单调递减,
f(x)在x=-1处取得极小值f(-1)=-
3
e
,在x=0处取得极大值f(0)=-1.
由g(x)=
1
3
x3+
1
2
x2+m,得g′(x)=x2+x.
当x<-1或x>0时,g′(x)>0;当-1<x<0时,g′(x)<0.
∴g(x)在(-∞,-1]]上单调递增,在[-1,0]单调递减,在[0,+∞)上单调递增,
∴g(x)在x=-1处取得极大值g(-1)=
1
6
+m,在x=0处取得极小值g(0)=m.
∵函数f(x)与函数g(x)的图象有3个不同的交点,
f(-1)<g(-1)
f(0)>g(0)
,解得,-
3
e
-
1
6
<m<-1.
点评:本题考查了导数的综合应用,同时考查了分类讨论的数学思想,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网