题目内容

设△ABC的角A,B,C所对应的边分别为a,b,c,△ABC的面积为S,且
AB
AC
=S
(1)若b=2,c=
5
,求a的值;
(2)若B=
π
4
,c=3,求△ABC的面积S.
考点:平面向量数量积的运算,正弦定理,余弦定理
专题:平面向量及应用
分析:(1)由条件求得tanA的值,可得sinA和cosA的值,再利用余弦定理求得a的值.
(2)求出sinC=sin(A+B)的值,再利用正弦定理求得a的值,可得△ABC的面积S=
1
2
ac•sinB 的值.
解答: 解:(1)由题意可得
1
2
bc•sinA=bc•cosA,即tanA=2,∴sinA=
2
5
5
,cosA=
5
5

再由余弦定理可得a=
b2+c2-2bc•cosA
=
4+5-4
5
5
5
=
5

(2)由(1)可得sinA=
2
5
5
,cosA=
5
5
,又B=
π
4
,c=3,∴sinC=sin(A+B)=sinAcosB+cosAsinB=
2
5
5
2
2
+
5
5
2
2
=
3
10
10

正弦定理可得
a
sinA
=
c
sinC
,即
a
2
5
5
=
3
3
10
10
,求得a=2
2

故△ABC的面积S=
1
2
ac•sinB=
1
2
×2
2
×3
×
2
2
=3.
点评:本题主要考查正弦定理、余弦定理、两角和的正弦公式、诱导公式、三角形的面积公式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网