题目内容
16.分析 过O作OH⊥平面PCF,则垂足H为PC中点,证明AB⊥平面PBC得出OH∥AB,故而O到AB的距离为BH的长,代入面积公式即可求出答案.
解答
解:∵PC=CB,F是PB的中点,
∴CF⊥PF,即△PCF是直角三角形.
过O作OH⊥平面PCF,垂足为H,则H是PC的中点,
∵PC⊥平面ABC,AB?平面ABC,
∴PC⊥AB,又AB⊥BC,PC∩BC=C,
∴AB⊥平面PBC,又OH⊥平面PBC,
∴OH∥AB,
连结BH,则BH为O到AB的距离,
由勾股定理得BH=$\sqrt{B{C}^{2}+C{H}^{2}}$=4$\sqrt{5}$,
∴S△OAB=$\frac{1}{2}×AB×BH$=$\frac{1}{2}×4×4\sqrt{5}$=8$\sqrt{5}$.
故答案为:8$\sqrt{5}$.
点评 本题考查了空间距离的计算,棱锥与球的位置关系,属于中档题.
练习册系列答案
相关题目
20.用数列归纳法证明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$时,验证n=1时,左边式子为( )
| A. | $\frac{1}{2}$ | B. | cosα | C. | $\frac{1}{2}+cosα$ | D. | $\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$ |
11.已知在平面直角坐标系中,曲线f(x)=alnx+x在x=a处的切线过原点,则a=( )
| A. | 1 | B. | e | C. | $\frac{1}{e}$ | D. | 0 |
8.某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程$\hat y=bx+a$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$.
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(元) | 90 | 84 | 83 | 80 | 75 | 68 |
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$.