题目内容
20.用数列归纳法证明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$时,验证n=1时,左边式子为( )| A. | $\frac{1}{2}$ | B. | cosα | C. | $\frac{1}{2}+cosα$ | D. | $\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$ |
分析 把n=1代入左边,得出最后一项即可得出结论.
解答 解:当n=1时,左边第一项为$\frac{1}{2}$,最后一项为cosα,
故n=1时,左边式子为$\frac{1}{2}$+cosα,
故选C.
点评 本题考查了数学归纳法,属于基础题.
练习册系列答案
相关题目
10.若Z=$\frac{1-2i}{1-i}$,则|Z|=( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{10}}}{2}$ |
8.△ABC中,已知a=2,b=x,B=60°,如果△ABC 有两组解,则x的取值范围( )
| A. | x>2 | B. | $\sqrt{3}<$x<2 | C. | 2<x<$\frac{4}{3}$$\sqrt{3}$ | D. | 2<x≤$\frac{4}{3}$$\sqrt{3}$ |
15.下表是一个有i行j列的表格.已知每行每列都成等差数列,
其中ai,j表示表格中第i行第j列的数,则a4,5=49,ai,j=2ij+i+j.
| 4 | 7 | a1,3 | … | a1,j |
| 7 | 12 | a2,3 | … | a2,j |
| a | a3,2 | a3,3 | … | a3,j |
| … | … | … | … | … |
| ai,1 | ai,2 | ai,3 | … | ai,j |
5.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y-1≤0.\end{array}\right.$若目标函数z=ax+y(a>0)仅在(3,0)点处取得最大值,则a的取值范围是( )
| A. | $a>\frac{1}{2}$ | B. | a>$\frac{1}{3}$ | C. | 0<a<$\frac{1}{2}$ | D. | a>0 |
9.曲线f(x)=-$\frac{\sqrt{3}}{3}{x}^{3}$+2在x=1处的切线倾斜角是( )
| A. | $\frac{1}{6}π$ | B. | $\frac{1}{3}π$ | C. | $\frac{5}{6}π$ | D. | $\frac{2}{3}π$ |