题目内容
11.若动圆C过定点A(4,0),且在y轴上截得弦MN的长为8,则动圆圆心C的轨迹方程是( )| A. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1(x>2)$ | C. | y2=8x | D. | y2=8x(x≠0) |
分析 设圆心C(x,y),过点C作CE⊥y 轴,垂足为E,利用垂径定理可得|ME|=4,又|CA|2=|CM|2=|ME|2+|EC|2,利用两点间的距离公式即可得出.
解答 解:设圆心C(x,y),过点C作CE⊥y 轴,垂足为E,则|ME|=4,
∴|CA|2=|CM|2=|ME|2+|EC|2,
∴(x-4)2+y2=42+x2,化为y2=8x.
故选:C.
点评 本题综合考查了抛物线的标准方程及其性质、垂径定理、两点间的距离公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目