题目内容

已知双曲线C:
x2
a2
-
y2
b2
=1的右焦点为F,过F作双曲线C的一条渐近线的垂线,垂足为H,交双曲线C于点M,|FM|=|HM|,则双曲线C的离心率为(  )
A、2
B、
3
C、
6
2
D、
2
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:设一渐近线方程为 y=
b
a
x,则F2H的方程为 y-0=k(x-c),代入渐近线方程求得H的坐标,有中点公式求得中点M的坐标,再把点M的坐标代入双曲线求得离心率.
解答: 解:由题意可知,一渐近线方程为 y=
b
a
x,则F2H的方程为 y-0=k(x-c),
代入渐近线方程 y=
b
a
x 可得
H的坐标为 (
a2
c
ab
c
),
故F2H的中点M (
c+
a2
c
2
ab
2c
),
∵|FM|=|HM|,
∴点M在双曲线C上,
(
c+
a2
c
2
)
2
a2
-
(
ab
2c
)
2
b2
=1,
c2
a2
=e2
=2,
故e=
2

故选:D
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网