题目内容
10.已知圆C:(x-1)2+(y-2)2=2与y轴在第二象限所围区域的面积为S,直线y=2x+b分圆C的内部为两部分,其中一部分的面积也为S,则b=( )| A. | $-\sqrt{6}$ | B. | ±$\sqrt{6}$ | C. | $-\sqrt{5}$ | D. | ±$\sqrt{5}$ |
分析 由题意,圆心到直线y=2x+b的距离为1,建立方程,即可得出结论.
解答 解:由题意,圆心到直线y=2x+b的距离为1,
∴$\frac{|b|}{\sqrt{5}}$=1,
∴b=±$\sqrt{5}$,
故选:D.
点评 本题考查点到直线的距离公式,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
1.记$a=\frac{1}{e}-ln\frac{1}{e}$,$b=\frac{1}{2e}-ln\frac{1}{2e}$,$c=\frac{2}{e}-ln\frac{2}{e}$,其中e为自然对数的底数,则a,b,c这三个数的大小关系是( )
| A. | a>b>c | B. | a<b<c | C. | b>c>a | D. | b>a>c |
18.若θ是第四象限角,且|cos$\frac{θ}{2}$|=-cos$\frac{θ}{2}$,则$\frac{θ}{2}$是( )
| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
5.为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为( )
| A. | 50 | B. | 45 | C. | 40 | D. | 20 |
15.在△ABC中,角A、B、C所对的边分别为a、b、c,|$\overrightarrow{AB}$|=5,20a$\overrightarrow{BC}$+15b$\overrightarrow{CA}$+12c$\overrightarrow{AB}$=$\overrightarrow{0}$,$\overrightarrow{BP}$=2$\overrightarrow{PA}$,则$\overrightarrow{CP}$$•\overrightarrow{AB}$的值为( )
| A. | $\frac{23}{3}$ | B. | -$\frac{7}{2}$ | C. | -$\frac{23}{3}$ | D. | -8 |
2.下列函数中,以$\frac{π}{2}$为最小正周期的奇函数是( )
| A. | y=sin2x+cos2x | B. | y=sin(4x+$\frac{π}{2}$) | C. | y=sin2xcos2x | D. | y=sin22x-cos22x |