题目内容
用反证法证明命题“已知A,B,C,D是空间中的四点,直线AB与CD是异面直线,则直线AC和BD也是异面直线.”应假设( )
| A、直线AC和BD是平行直线 |
| B、直线AB和CD是平行直线 |
| C、直线AC和BD是共面直线 |
| D、直线AB和CD是共面直线 |
考点:反证法与放缩法
专题:证明题,反证法
分析:用反证法证明命题时,应假设命题的否定成立
解答:
解:用反证法证明命题:“若直线AB、CD是异面直线,
则直线AC、BD也是异面直线”应假设直线AC、BD是共面直线,
故选:C.
则直线AC、BD也是异面直线”应假设直线AC、BD是共面直线,
故选:C.
点评:本题主要考查求一个命题的否定,用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的否定,是解题的突破口.
练习册系列答案
相关题目
已知向量
=(-1,2),
=(x,4),且
∥
,则x的值为( )
| a |
| b |
| a |
| b |
| A、8 | B、2 | C、-2 | D、-8 |
| x2 |
| m2 |
| y2 |
| n2 |
| x2 |
| a2 |
| y2 |
| b2 |
| 1 | ||
|
| 1 | ||
|
| A、2 | ||
B、
| ||
C、
| ||
| D、4 |
双曲线2x2-y2=8的虚轴长是( )
| A、2 | ||
B、2
| ||
| C、4 | ||
D、4
|
由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( )
| A、24个 | B、12个 |
| C、6个 | D、4个 |
已知定义在(0,π)的函数 f(x)=sinx-
x,则f(x)的单调递减区间为( )
| 1 |
| 2 |
| A、(0,π) | ||
B、(0,
| ||
C、(
| ||
D、(
|
已知p:∅⊆{0};q:{1}∈{1,2}.由它们构成的以下三个命题中,真命题有( )
①p∧q ②p∨q ③¬p.
①p∧q ②p∨q ③¬p.
| A、1个 | B、2个 | C、3个 | D、0个 |