题目内容
已知等差数列{an}中,a1+a3+a5=21,a2+a4+a6=27,数列{bn}的前n项和为Sn,且4Sn=3bn-a1.
(1)求an,bn;
(2)若cn=
,求数列{cn}的前n项和Tn;
(3)当n∈N*时,求dn=
的最小值和最大值.
(1)求an,bn;
(2)若cn=
| 1 |
| anan+1 |
(3)当n∈N*时,求dn=
| 4bn+1 |
| bn-1 |
考点:数列的求和,数列的函数特性,数列递推式
专题:等差数列与等比数列
分析:(1)利用等差数列通项的性质,求出公差,可求等差数列{an}的通项,利用再写一式,两式相减,可得数列{bn}是以-3为首项,-3为公比的等比数列,可求数列{bn}的通项;
(2)分类讨论,能求出dn=
的最小值和最大值.
(2)分类讨论,能求出dn=
| 4bn+1 |
| bn-1 |
解答:
解:(1)设等差数列{an}的公差为d,则
∴a1+a3+a5=21,a2+a4+a6=27,
∴3a3=21,3a4=27,
∴a3=7,a4=9,∴d=2,
∴an=a3+2(n-3)=2n+1,
∴a1=3,∴4Sn=3bn-3,①
n=1时,4S1=3b1-3,∴b1=-3,
n≥2时,4Sn-1=3bn-1-3,②,
∴①-②整理得bn=-3bn-1,
∴数列{bn}是以-3为首项,-3为公比的等比数列,
∴bn=(-3)n.
(2)∵cn=
=
=
(
-
),
∴Tn=
(
-
+
-
+…+
-
)
=
(
-
),
=
.
(3)dn=
=4+
,
n为奇数时,dn=4-
,
∵3n+1≥4,n=1时取等号,
∴
≤4-
<4,
n为偶数时,dn=4+
,
∵3n-1≥8,n=2时取等号,
∴4≤4+
≤
,
综上,
≤dn≤
,dn≠4,
∴dn=
的最小值是
,最大值是
.
∴a1+a3+a5=21,a2+a4+a6=27,
∴3a3=21,3a4=27,
∴a3=7,a4=9,∴d=2,
∴an=a3+2(n-3)=2n+1,
∴a1=3,∴4Sn=3bn-3,①
n=1时,4S1=3b1-3,∴b1=-3,
n≥2时,4Sn-1=3bn-1-3,②,
∴①-②整理得bn=-3bn-1,
∴数列{bn}是以-3为首项,-3为公比的等比数列,
∴bn=(-3)n.
(2)∵cn=
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
=
| n |
| 6n+9 |
(3)dn=
| 4bn+1 |
| bn-1 |
| 5 |
| (-3)n-1 |
n为奇数时,dn=4-
| 5 |
| 3n+1 |
∵3n+1≥4,n=1时取等号,
∴
| 11 |
| 4 |
| 5 |
| 3n+1 |
n为偶数时,dn=4+
| 5 |
| 3n-1 |
∵3n-1≥8,n=2时取等号,
∴4≤4+
| 5 |
| 3n-1 |
| 37 |
| 8 |
综上,
| 11 |
| 4 |
| 37 |
| 8 |
∴dn=
| 4bn+1 |
| bn-1 |
| 11 |
| 4 |
| 37 |
| 8 |
点评:本题考查等差数列于等比数列的定义,通项公式,考查数列递推式,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目