题目内容
6.曲线$f(x)=\frac{sinx}{{\sqrt{2}sin(x+\frac{π}{4})}}-\frac{1}{2}$在点$M(\frac{π}{4},0)$处的切线的斜率为$\frac{1}{2}$.分析 先求出导函数,然后根据导数的几何意义求出函数f(x)在x=$\frac{π}{4}$处的导数,从而求出切线的斜率.
解答 解:∵$f(x)=\frac{sinx}{{\sqrt{2}sin(x+\frac{π}{4})}}-\frac{1}{2}$,
∴f'(x)=$\frac{1}{(sinx+cosx)^{2}}$,
∴x=$\frac{π}{4}$时.f′(x)=$\frac{1}{2}$.
故答案为$\frac{1}{2}$.
点评 本题主要考查了导数的几何意义,以及导数的计算,同时考查了计算能力,属于基础题.
练习册系列答案
相关题目
17.圆(x-2)2+y2=4与圆x2+(y-2)2=4在公共弦所对的圆心角是( )
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{2}$ |
18.已知集合 A={x|-2<x<3},B={x|x≥m}.若 A∩B=∅,则实数m的取值范围是( )
| A. | (-∞,3] | B. | (-2,3] | C. | (-∞,-2) | D. | [3,+∞) |
7.若直线l的方向向量与平面α的法向量的夹角为120°,则直线l与平面α的夹角为( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
8.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
| 甲 | 27 | 38 | 30 | 37 | 35 | 31 |
| 乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?