题目内容
18.已知集合 A={x|-2<x<3},B={x|x≥m}.若 A∩B=∅,则实数m的取值范围是( )| A. | (-∞,3] | B. | (-2,3] | C. | (-∞,-2) | D. | [3,+∞) |
分析 根据集合的交集的运算性质计算即可.
解答 解:A={x|-2<x<3},B={x|x≥m},
若 A∩B=∅,
则实数m≥3,
故选:D.
点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.
练习册系列答案
相关题目
8.已知定义在R上的函数f(x)满足f(x)+f(-x)=2x2,且x∈[0,+∞)时f′(x)>2x恒成立,则不等式f(8-x)+16x<64+f(x)的解集为( )
| A. | (4,+∞) | B. | (-∞,4) | C. | (8,+∞) | D. | (-∞,8) |
9.已知P是△ABC内一点,且$5\overrightarrow{AP}-2\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow 0$,则△PAB的面积与△ABC的面积之比等于( )
| A. | 1:3 | B. | 2:3 | C. | 1:5 | D. | 2:5 |
2.若一个圆柱的轴截面是一个面积为4的正方形,则该圆柱的表面积为( )
| A. | 4π | B. | 5π | C. | $\frac{7π}{2}$ | D. | 6π |
19.函数f(x)=log2(x2-3x+2)的定义域为( )
| A. | (0,1)∪(2,+∞) | B. | (-∞,1)∪(2,+∞) | C. | (0,+∞) | D. | (1,2) |