题目内容

如图,为了测量河对岸A、B两点之间的距离,观察者找到一个点C,从C点可以观察到点A、B;找到一个点D,从D点可以观察到点A、C;找到一个点E,从E点可以观察到点B、C;并测量得到一些数据:CD=2,CE=2
3
,∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°,∠E=60°,则A、B两点之间的距离为
 
.(其中cos48.19°取近似值
2
3
考点:解三角形的实际应用
专题:应用题,解三角形
分析:求出AC,通过正弦定理求出BC,然后利用余弦定理求出AB.
解答: 解:依题意知,在△ACD中,∠A=30°由正弦定理得AC=
CDsin45°
sin30°
=2
2

在△BCE中,∠CBE=45°,由正弦定理得BC=
CEsin60°
sin45°
=3
2

在△ABC中,由余弦定理AB2=AC2+BC2-2AC•BCcos∠ACB=10
∴AB=
10

故答案为:
10
点评:本题考查三角形的面积的求法,正弦定理与余弦定理的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网