题目内容
9.已知x、y∈R+,且满足$\frac{1}{x}$+$\frac{2}{y}$=4,则8x+y的取值范围是$[\frac{9}{2},+∞)$.分析 x、y∈R+,且满足$\frac{1}{x}$+$\frac{2}{y}$=4,可得8x+y=$\frac{1}{4}(\frac{1}{x}+\frac{2}{y})$(8x+y)=$\frac{1}{4}$(10+$\frac{16x}{y}+\frac{y}{x}$),利用基本不等式的性质即可得出.
解答 解:∵x、y∈R+,且满足$\frac{1}{x}$+$\frac{2}{y}$=4,
则8x+y=$\frac{1}{4}(\frac{1}{x}+\frac{2}{y})$(8x+y)=$\frac{1}{4}$(10+$\frac{16x}{y}+\frac{y}{x}$)≥$\frac{1}{4}(10+2\sqrt{\frac{16x}{y}•\frac{y}{x}})$=$\frac{9}{2}$,当且仅当y=4x=$\frac{3}{2}$时取等号.
∴8x+y的取值范围是$[\frac{9}{2},+∞)$.
故答案为:$[\frac{9}{2},+∞)$.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.斜率为2的直线的倾斜角α所在的范围是( )
| A. | 0°<α<45° | B. | 45°<α<90° | C. | 90°<α<135° | D. | 135°<α<180° |
14.复数z=(3-i)i在复平面内的对应点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |