题目内容

17.已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$.
(1)求$cos(\frac{5π}{6}+α)$的值;
(2)求$sin(\frac{2π}{3}-α)$的值.

分析 (1)根据$(\frac{5π}{6}+α)+(\frac{π}{6}-α)=π$,构造同角化简即可.
(2)根据$\frac{2π}{3}-α=\frac{π}{2}+(\frac{π}{6}-α)$,构造同角化简即可.

解答 解:由题意$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$.
(1)∵$(\frac{5π}{6}+α)+(\frac{π}{6}-α)=π$,
∴$cos(\frac{5π}{6}+α)=cos[π-(\frac{π}{6}-α)]=-cos(\frac{π}{6}-α)=-\frac{{\sqrt{3}}}{3}$.
(2)∵$\frac{2π}{3}-α=\frac{π}{2}+(\frac{π}{6}-α)$,
∴$sin(\frac{2π}{3}-α)=sin[\frac{π}{2}+(\frac{π}{6}-α)]=cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$.

点评 本题考查了诱导公式的运用,角度的构造思想.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网