题目内容
5.已知集合A={x|-1<x<2},B={-1,0,1},A∩B={0,1}.分析 直接根据交集的定义即可求出.
解答 解:集合A={x|-1<x<2},B={-1,0,1},
则A∩B={0,1},
故答案为:{0,1}.
点评 本题考查集合的交集的运算运算,解题时要认真审题,属于基础题.
练习册系列答案
相关题目
17.已知命题p:?x>0,sinx>-1;q:?x>0,cosx>-1,则下列命题是真命题的是( )
| A. | p∧q | B. | p∨(¬q) | C. | (¬p)∨q | D. | ¬(p∨q) |
13.若A={x|x2+2x-8<0},B={x|x<1},则图中阴影部分表示的集合为( )

| A. | (-4,1] | B. | (1,2) | C. | [1,2) | D. | (-4,1) |
20.已知i是虚数单位,则复数$\frac{{{{({1-i})}^2}}}{1+i}$在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
10.
某校高三期中考试后,数学教师对本次全部数学成绩按1:20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如表所示的频率分布表:
(Ⅰ)求表中a,b的值及成绩在[90,110)范围内的个体数;
(Ⅱ)从样本中成绩在[100,130)内的个体中随机抽取4个个体,设其中成绩在[100,110)内的个体数为X,求X的分布列及数学期望E(X);
(Ⅲ)若把样本各分数段的频率看作总体相应各分数段的概率,现从全校高三期中考试数学成绩中随机抽取3个,求其中恰好有1个成绩及格的概率(成绩在[90,150)内为及格).
附注:假定逐次抽取,且各次抽取互相独立.
| 分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 总计 |
| 频数 | b | |||||
| 频率 | a | 0.25 |
(Ⅱ)从样本中成绩在[100,130)内的个体中随机抽取4个个体,设其中成绩在[100,110)内的个体数为X,求X的分布列及数学期望E(X);
(Ⅲ)若把样本各分数段的频率看作总体相应各分数段的概率,现从全校高三期中考试数学成绩中随机抽取3个,求其中恰好有1个成绩及格的概率(成绩在[90,150)内为及格).
附注:假定逐次抽取,且各次抽取互相独立.
14.设集合A={-2,-1,0,1,2},集合B={y=|y=log${\;}_{\frac{1}{2}}$x,x≥1},A∩B=( )
| A. | {1,2} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {1,2,0} |
15.设x是虚数单位,如果复数$\frac{a+i}{2-i}$的实部与虚部相等,那么实数a的值为( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | 3 | D. | -3 |