题目内容
(
-2x2)5的展开式中常数项是( )
| 1 | ||
|
| A、-5 | B、5 | C、-10 | D、10 |
考点:二项式系数的性质
专题:二项式定理
分析:在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.
解答:
解:(
-2x2)5的展开式的通项公式为Tr+1=
•(-2)r•x
,
令
=0,求得r=1,故展开式中常数项是-2×
=-10,
故选:C.
| 1 | ||
|
| C | r 5 |
| 5r-5 |
| 2 |
令
| 5r-5 |
| 2 |
| C | 1 5 |
故选:C.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.
练习册系列答案
相关题目
四面体P-ABC中,若PA=PB=PC,则点P在平面ABC内的射影点O是三角形ABC的( )
| A、内心 | B、外心 | C、垂心 | D、重心 |
若A、B、C三点共线,O是这条直线外一点,且满足m
-2
+
=
,若
=λ
,则λ的值为( )
| OA |
| OB |
| OC |
| 0 |
| BA |
| AC |
A、-
| ||
B、-
| ||
C、
| ||
D、
|
下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )
A、f(x)=
| ||
| B、f(x)=x2-1 | ||
| C、f(x)=x3 | ||
| D、f(x)=2-x |
设(2-x)5=a0+a1x+a2x2…+a5x5,那么
的值为( )
| a0+a2+a4 |
| a1+a3+a5 |
A、-
| ||
B、-
| ||
C、-
| ||
| D、-1 |
| A、400 | B、600 |
| C、700 | D、800 |
空间有四个点,其中任意三点,都不在同一条直线上,那么它们可确定( )
| A、三个或两个平面 |
| B、四个或三个平面 |
| C、三个或一个平面 |
| D、四个或一个平面 |