题目内容
19.过点(1,2),且与原点距离最大的直线方程是( )| A. | x+2y-5=0 | B. | 2x+y-4=0 | C. | x+3y-7=0 | D. | x-2y+3=0 |
分析 数形结合得到所求直线与OA垂直,再用点斜式方程求解.
解答 解:根据题意得,当与直线OA垂直时距离最大,
因直线OA的斜率为2,所以所求直线斜率为-$\frac{1}{2}$,
所以由点斜式方程得:y-2=-$\frac{1}{2}$(x-1),
化简得:x+2y-5=0,
故选:A.
点评 本题考查直线方程的求解,要数形结合先判断什么时候距离最大才能求直线方程,属基础题.
练习册系列答案
相关题目
9.下列命题成立的是( )
| A. | 若¬p、¬q均为真命题,则p∨q为真命题 | |
| B. | 命题“若x2+2x<0,则-2<x<0”的逆否命题为“若-2<x<0,则x2+2x<0” | |
| C. | 方程x2=1的一个必要不充分条件是x=1 | |
| D. | 抛掷3枚质地均匀的硬币,事件“至少有两枚硬币正面向上”等价于“至多有一枚硬币反面向上” |
10.双曲线E1:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦点分别为F1,F2,椭圆E2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线E1有公共的焦点,且E1,E2在第一象限和第四象限的交点分别为M,N,弦MN过F2,则椭圆E2的标准方程为( )
| A. | $\frac{{x}^{2}}{\frac{81}{4}}$+$\frac{{y}^{2}}{\frac{45}{4}}$=1 | B. | $\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1 |
14.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1(-c,0)的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,且AB⊥AF2,则椭圆E的离心率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
4.
如图,在三棱锥C-DAB中,E,F分别是AC,BD的中点,若EF⊥AB,且向量$\overrightarrow{EF}$与$\overrightarrow{CD}$的夹角为30°,则棱CD与棱AB的关系是( )
| A. | CD=2AB | B. | CD=AB | C. | AB=2CD | D. | 无法确定 |
11.若函数y=ex+ax有大于零的极值点,则实数a的取值范围是( )
| A. | a>-1 | B. | $a>-\frac{1}{e}$ | C. | a<-1 | D. | $a<-\frac{1}{e}$ |
8.已知单位向量$\overrightarrow{{e}_{1}}$与单位向量$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{3}$,$\overrightarrow{OP}$=3$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,则|$\overrightarrow{OP}$|等于( )
| A. | 5 | B. | 6 | C. | $\sqrt{37}$ | D. | $\sqrt{39}$ |
3.已知a,b是实数,若圆(x-1)2+(y-1)2=1与直线(a+1)x+(b+1)y-2=0相切,则a+b的取值范围是( )
| A. | [2-2$\sqrt{2}$,2+$\sqrt{2}$] | B. | (-∞,2-2$\sqrt{2}$]∪[2+2$\sqrt{2}$,+∞) | C. | (-∞,-2$\sqrt{2}$]∪[2$\sqrt{2}$,+∞) | D. | (-∞,-2]∪[2+2$\sqrt{2}$,+∞) |