题目内容

10.设函数g(x)=$\frac{1+sinx-cosx}{x}$(0<x≤π),求:
(1)g′(x),(x2g′(x)+1)′;
(2)分别求满足(x2g′(x)+1)′≥0,(x2g′(x)+1)′<0的x的范围.

分析 (1)根据导数的运算法则,求出g(x)的导数即可,求出x2g′(x)+1的表达式,从而求出其导数即可;
(2)先求出(x2g′(x)+1)′的表达式,解不等式即可.

解答 解:(1)∵g(x)=$\frac{1+sinx-cosx}{x}$(0<x≤π),
∴g′(x)=$\frac{(x+1)cosx+(x-1)sinx-1}{{x}^{2}}$,
∴(x2g′(x)+1)′
=[(x+1)cosx+(x-1)sinx]′
=cosx-(x+1)sinx+sinx+(x-1)cosx
=x(cosx-sinx).
(2)由(1)得:(x2g′(x)+1)′=x(cosx-sinx),(0<x≤π),
令x(cosx-sinx)≥0,得$\sqrt{2}$xsin(x-$\frac{π}{4}$)≤0,解得:0<x≤$\frac{π}{4}$,
令x(cosx-sinx)<0,得$\sqrt{2}$xsin(x-$\frac{π}{4}$)>0,解得:$\frac{π}{4}$<x<π.

点评 本题考查了求函数的导数问题,考查解三角函数的不等式问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网