题目内容

已知函数f(x)=sin(2x+φ)(0<φ<π)的图象经过点(
π
12
, 1)

(1)求φ的值;
(2)在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若a2+b2-c2=ab,且f(
A
2
+
π
12
)=
2
2
.求sinB.
考点:三角函数中的恒等变换应用,余弦定理
专题:三角函数的图像与性质
分析:(1)利用函数f(x)=sin(2x+φ)(0<φ<π)的图象经过点(
π
12
, 1)
,结合0<φ<π求出φ的值.
(2)利用余弦定理求出C的正弦函数与余弦函数值,通过f(
A
2
+
π
12
)=
2
2
求出A的正弦函数与余弦函数值,即可求解sinB.
解答: (本小题满分12分)
解:(1)由题意可得f(
π
12
)=1
,即sin(
π
6
+φ)=1
.    …(2分)
∵0<φ<π,∴
π
6
π
6
+φ<
6
,∴
π
6
+φ=
π
2
,∴φ=
π
3
.  …(5分)
(2)∵a2+b2-c2=ab,∴cosC=
a2+b2-c2
2ab
=
1
2
,…(7分)
sinC=
1-cos2C
=
3
2
.    …(8分)
由(1)知f(x)=sin(2x+
π
3
)

f(
A
2
+
π
12
)=sin(A+
π
2
)=cosA=
2
2

∵A∈(0,π),∴sinA=
1-cos2A
=
2
2
,…(10分)
又∵sinB=sin(π-(A+C))=sin(A+C),
∴sinB=sinAcosC+cosAsinC=
2
2
×
1
2
+
2
2
×
3
2
=
2
+
6
4
.…(12分)
点评:本小题主要考查了三角函数f(x)=Asin(ωx+ϕ)的图象与性质,三角恒等变换,以及余弦定理等基础知识,考查了简单的数学运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网