题目内容

已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(I) 证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
n(an+1)
2
,求数列{bn}的前n项和Sn
(Ⅲ)证明:
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得an+1+1=2(an+1),a1+1=2,由此能证明数列{an+1}是首项为2,公比为2的等比数列,从而能求出an=2n-1
(Ⅱ)由bn=
n(an+1)
2
=
n•2n
2
=n•2n-1,利用错位相减法能求出Sn=(n-1)•2n+1.
(Ⅲ)由
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
ak
ak+1
=
1
2
-
1
3•2k+2k-2
1
2
-
1
3
1
2k
,利用放缩法能证明
n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
解答: (Ⅰ)证明:∵a1=1,an+1=2an+1,
∴an+1+1=2(an+1),
又a1+1=2,
∴数列{an+1}是首项为2,公比为2的等比数列,
an+1=2n
an=2n-1
(Ⅱ)解:∵bn=
n(an+1)
2
=
n•2n
2
=n•2n-1
∴Sn=1•20+2•2+3•22+…+n•2n-1,①
2Sn=1•2+2•22+3•23+…+n•2n,②
①-②,得:-Sn=1+2+22+…+2n-1-n•2n
=
1-2n
1-2
-n•2n
∴Sn=(n-1)•2n+1.
(Ⅲ)证明:∵
ak
ak+1
=
2k-1
2k+1-1
=
2k-1
2(2k-
1
2
)
1
2
,k=1,2,3,…,n
a1
a2
+
a2
a3
+…+
an
an+1
n
2

ak
ak+1
=
2k-1
2k+1-1
=
1
2
-
1
2(2k+1-1)
=
1
2
-
1
3•2k+2k-2
1
2
-
1
3
1
2k
,k=1,2,3,…,n
a1
a2
+
a2
a3
+…+
an
an+1
n
2
-
1
3
(
1
2
+
1
22
+…+
1
2n
)
=
n
2
-
1
3
(1-
1
2n
)
n
2
-
1
3

n
2
-
1
3
a1
a2
+
a2
a3
+…+
an
an+1
n
2
(n∈N*)
点评:本题考查等比数列的证明,考查数列的前n项和的求法,考查不等式的证明,解题时要注意构造法、放缩法、错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网