题目内容
已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(I) 证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
,求数列{bn}的前n项和Sn;
(Ⅲ)证明:
-
<
+
+…+
<
(n∈N*).
(I) 证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)若bn=
| n(an+1) |
| 2 |
(Ⅲ)证明:
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得an+1+1=2(an+1),a1+1=2,由此能证明数列{an+1}是首项为2,公比为2的等比数列,从而能求出an=2n-1.
(Ⅱ)由bn=
=
=n•2n-1,利用错位相减法能求出Sn=(n-1)•2n+1.
(Ⅲ)由
=
=
<
,
=
-
≥
-
•
,利用放缩法能证明
-
<
+
+…+
<
(n∈N*).
(Ⅱ)由bn=
| n(an+1) |
| 2 |
| n•2n |
| 2 |
(Ⅲ)由
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
| ak |
| ak+1 |
| 1 |
| 2 |
| 1 |
| 3•2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
解答:
(Ⅰ)证明:∵a1=1,an+1=2an+1,
∴an+1+1=2(an+1),
又a1+1=2,
∴数列{an+1}是首项为2,公比为2的等比数列,
∴an+1=2n,
∴an=2n-1.
(Ⅱ)解:∵bn=
=
=n•2n-1,
∴Sn=1•20+2•2+3•22+…+n•2n-1,①
2Sn=1•2+2•22+3•23+…+n•2n,②
①-②,得:-Sn=1+2+22+…+2n-1-n•2n
=
-n•2n
∴Sn=(n-1)•2n+1.
(Ⅲ)证明:∵
=
=
<
,k=1,2,3,…,n
∴
+
+…+
<
,
∵
=
=
-
=
-
≥
-
•
,k=1,2,3,…,n
∴
+
+…+
≥
-
(
+
+…+
)=
-
(1-
)>
-
,
∴
-
<
+
+…+
<
(n∈N*).
∴an+1+1=2(an+1),
又a1+1=2,
∴数列{an+1}是首项为2,公比为2的等比数列,
∴an+1=2n,
∴an=2n-1.
(Ⅱ)解:∵bn=
| n(an+1) |
| 2 |
| n•2n |
| 2 |
∴Sn=1•20+2•2+3•22+…+n•2n-1,①
2Sn=1•2+2•22+3•23+…+n•2n,②
①-②,得:-Sn=1+2+22+…+2n-1-n•2n
=
| 1-2n |
| 1-2 |
∴Sn=(n-1)•2n+1.
(Ⅲ)证明:∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 2k-1 | ||
2(2k-
|
| 1 |
| 2 |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
∵
| ak |
| ak+1 |
| 2k-1 |
| 2k+1-1 |
| 1 |
| 2 |
| 1 |
| 2(2k+1-1) |
| 1 |
| 2 |
| 1 |
| 3•2k+2k-2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2k |
∴
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| n |
| 2 |
| 1 |
| 3 |
∴
| n |
| 2 |
| 1 |
| 3 |
| a1 |
| a2 |
| a2 |
| a3 |
| an |
| an+1 |
| n |
| 2 |
点评:本题考查等比数列的证明,考查数列的前n项和的求法,考查不等式的证明,解题时要注意构造法、放缩法、错位相减法的合理运用.
练习册系列答案
相关题目
已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{
}的前200项和为( )
| 1 |
| anan-1 |
A、
| ||
B、
| ||
C、
| ||
D、
|