ÌâÄ¿ÄÚÈÝ
ÏÂÁнáÂÛ£º
£¨1£©ÊµÊýa£¬b£¬c³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬b£¬c£¬a³ÉµÈ²îÊýÁУ¬Ôòq=1£»
£¨2£©ÊýÁÐǰnÏîºÍÊÇSn£¬ÔòµÈ²îÊýÁÐÖУ¬Sm£¬S2m-Sm£¬S3m-S2mÒ»¶¨¹¹³ÉµÈ²îÊýÁУ¬µÈ±ÈÊýÁÐÖУ¬Sm£¬S2m-Sm£¬S3m-S2mÒ»¶¨¹¹³ÉµÈ±ÈÊýÁУ»
£¨3£©ÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬Ç°nÏîºÍSn=
£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ®
£¨4£©Èñ½Ç¡÷ABCÖÐsinC£¾cosBÒ»¶¨³ÉÁ¢£®
ÆäÖÐÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
£¨1£©ÊµÊýa£¬b£¬c³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬b£¬c£¬a³ÉµÈ²îÊýÁУ¬Ôòq=1£»
£¨2£©ÊýÁÐǰnÏîºÍÊÇSn£¬ÔòµÈ²îÊýÁÐÖУ¬Sm£¬S2m-Sm£¬S3m-S2mÒ»¶¨¹¹³ÉµÈ²îÊýÁУ¬µÈ±ÈÊýÁÐÖУ¬Sm£¬S2m-Sm£¬S3m-S2mÒ»¶¨¹¹³ÉµÈ±ÈÊýÁУ»
£¨3£©ÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬Ç°nÏîºÍSn=
| an+1 |
| 3 |
£¨4£©Èñ½Ç¡÷ABCÖÐsinC£¾cosBÒ»¶¨³ÉÁ¢£®
ÆäÖÐÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
| A¡¢3¸ö | B¡¢2¸ö | C¡¢1¸ö | D¡¢0¸ö |
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺ÔĶÁÐÍ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,½âÈý½ÇÐÎ
·ÖÎö£º£¨1£©ÓɵȲîÊýÁк͵ȱÈÊýÁеÄÐÔÖÊ£¬¼´¿ÉµÃµ½¹«±È£»
£¨2£©ÇóµÈ²îÊýÁеÄͨÏîºÍÇóºÍ£¬¼´¿ÉÅжÏÿ¸ômÏîÇóºÍ³ÉµÈ²îÊýÁУ®È¡¹«±ÈΪ-1£¬mΪżÊý£¬Ôòÿ¸ômÏîÇóºÍ¾ùΪ0£¬²»ÎªµÈ±ÈÊýÁУ»
£¨3£©ÓÉÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµÊ½£¬¼´¿ÉÅжϣ¨3£©£»
£¨4£©ÓÉÈñ½ÇÈý½ÇÐÎÖÐB+C£¾
£¬ÔòC£¾
-B£¬Á½±ßÈ¡ÕýÏÒ£¬¼´¿ÉÅжϣ®
£¨2£©ÇóµÈ²îÊýÁеÄͨÏîºÍÇóºÍ£¬¼´¿ÉÅжÏÿ¸ômÏîÇóºÍ³ÉµÈ²îÊýÁУ®È¡¹«±ÈΪ-1£¬mΪżÊý£¬Ôòÿ¸ômÏîÇóºÍ¾ùΪ0£¬²»ÎªµÈ±ÈÊýÁУ»
£¨3£©ÓÉÊýÁеÄͨÏîºÍǰnÏîºÍµÄ¹ØÏµÊ½£¬¼´¿ÉÅжϣ¨3£©£»
£¨4£©ÓÉÈñ½ÇÈý½ÇÐÎÖÐB+C£¾
| ¦Ð |
| 2 |
| ¦Ð |
| 2 |
½â´ð£º
½â£º£¨1£©ÊµÊýa£¬b£¬c³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬b£¬c£¬a³ÉµÈ²îÊýÁУ¬Ôòb2=ac£¬ÇÒa+b=2c£¬ÏûÈ¥b£¬µÃ
£¨2c-a£©2=ac£¬»¯¼òµÃa=c»òa=4c£¬¼´¹«±ÈΪ1»ò¡À2£¬¹Ê£¨1£©´í£»
£¨2£©ÊýÁÐǰnÏîºÍÊÇSn£¬ÔòµÈ²îÊýÁÐÖУ¬Sm£¬S2m-Sm=Sm+m2d£¬S3m-S2m=Sm+2m2d£¬¹¹³ÉµÈ²îÊýÁУ¬
µÈ±ÈÊýÁÐÖУ¬Èô¹«±ÈΪ-1£¬mΪżÊý£¬ÔòSm=0£¬S2m-Sm=0£¬S3m-S2m=0£¬Ôò²»ÎªµÈ±ÈÊýÁУ¬¹Ê£¨2£©´í£»
£¨3£©ÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬Ç°nÏîºÍSn=
£¬ÔòSn-1=
£¬£¨n£¾1£©£¬Ïà¼õµÃ
an=
-
£¬Ôòan+1=4an£¬£¨n£¾1£©£¬ÓÉÓÚÊ×Ïîδ֪£¬¹Ê²»ÄÜÈ·¶¨ÎªµÈ±ÈÊýÁУ¬¹Ê£¨3£©´í£»
£¨4£©Èñ½Ç¡÷ABCÖУ¬B+C£¾
£¬ÔòC£¾
-B£¬¼´ÓÐsinC£¾cosB³ÉÁ¢£¬¹Ê£¨4£©¶Ô£®
¹ÊÑ¡£ºC£®
£¨2c-a£©2=ac£¬»¯¼òµÃa=c»òa=4c£¬¼´¹«±ÈΪ1»ò¡À2£¬¹Ê£¨1£©´í£»
£¨2£©ÊýÁÐǰnÏîºÍÊÇSn£¬ÔòµÈ²îÊýÁÐÖУ¬Sm£¬S2m-Sm=Sm+m2d£¬S3m-S2m=Sm+2m2d£¬¹¹³ÉµÈ²îÊýÁУ¬
µÈ±ÈÊýÁÐÖУ¬Èô¹«±ÈΪ-1£¬mΪżÊý£¬ÔòSm=0£¬S2m-Sm=0£¬S3m-S2m=0£¬Ôò²»ÎªµÈ±ÈÊýÁУ¬¹Ê£¨2£©´í£»
£¨3£©ÊýÁÐ{an}¸÷Ïî¾ù²»Îª0£¬Ç°nÏîºÍSn=
| an+1 |
| 3 |
| an |
| 3 |
an=
| an+1 |
| 3 |
| an |
| 3 |
£¨4£©Èñ½Ç¡÷ABCÖУ¬B+C£¾
| ¦Ð |
| 2 |
| ¦Ð |
| 2 |
¹ÊÑ¡£ºC£®
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁк͵ȲîÊýÁеÄͨÏîºÍÇóºÍ£¬ÒÔ¼°ÐÔÖʵÄÔËÓ㬿¼²éÊýÁеÄͨÏîÓëǰnÏîºÍµÄ¹ØÏµ£¬Í¬Ê±¿¼²éÈý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼°ÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
F1¡¢F2ÊÇÍÖÔ²
+y2=1µÄ×óÓÒ½¹µã£¬MÊÇÍÖÔ²ÉÏÒ»µã£¬Èô
•
=0£¬ÔòMµ½yÖáµÄ¾àÀëΪ£¨¡¡¡¡£©
| x2 |
| 4 |
| MF1 |
| MF2 |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢
|
ÏÂÁйØÏµÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
¢Ù0¡Ê{0}£¬¢Ú¦µ
{0}£¬¢Û{0£¬1}⊆{£¨0£¬1£©}£¬¢Ü{£¨a£¬b£©}={£¨b£¬a£©}£®
¢Ù0¡Ê{0}£¬¢Ú¦µ
? ¡Ù |
| A¡¢1 | B¡¢2 | C¡¢3 | D¡¢4 |
ÒÑÖªÊýÁÐ{an}¹²ÓÐ2n+1ÏÆäÖÐÆæÊýÏîͨÏʽΪan=2n-1£¬ÔòÊýÁÐ{an}µÄÆæÊýÏîµÄºÍΪ£¨¡¡¡¡£©
| A¡¢2£¨2n+1-1£©-n-1 | ||
B¡¢
| ||
| C¡¢2£¨4n+1-1£©-n-1 | ||
D¡¢
|
A¡¢B¡¢C¡¢D¡¢E¹²5ÈËÕ¾³ÉÒ»ÅÅ£¬Èç¹ûA¡¢BÖмä¸ôÒ»ÈË£¬ÄÇôÅÅ·¨ÖÖÊýÓУ¨¡¡¡¡£©
| A¡¢60 | B¡¢36 | C¡¢48 | D¡¢24 |
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨tΪ²ÎÊý£©£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ
£¨¦ÈΪ²ÎÊý£©£¬ÔòÖ±ÏßlºÍÇúÏßCµÄ¹«¹²µãÓУ¨¡¡¡¡£©
|
|
| A¡¢0¸ö | B¡¢1¸ö | C¡¢2¸ö | D¡¢ÎÞÊý¸ö |
ÒÑÖªº¯Êýf£¨x£©=x-1+
£¨x£¾-1£©£®µ±x=aʱ£¬f£¨x£©È¡µÃ×îСֵ£¬Ôòa=£¨¡¡¡¡£©
| 9 |
| x+1 |
| A¡¢2 | B¡¢1 | C¡¢-3 | D¡¢-4 |