题目内容

11.已知等差数列{an}满足a3•a7=-12,a4+a6=-4,求等差数列{an}的通项公式.

分析 由已知得a3,a7是一元二次方程x2+4x-12=0的两个根,解方程x2+4x-12=0,得x1=-6,x2=2,从而得到a3=-6,a7=2或a3=2,a7=-6,由此能求出数列{an}的通项公式.

解答 解:∵等差数列{an}满足a3•a7=-12,a4+a6=a3+a7=-4,
∴a3,a7是一元二次方程x2+4x-12=0,
解方程x2+4x-12=0,得x1=-6,x2=2,
当a3=-6,a7=2时,
$\left\{\begin{array}{l}{{a}_{1}+2d=-6}\\{{a}_{1}+6d=2}\end{array}\right.$,解得a1=-10,d=2,
an=-10+(n-1)×2=2n-12;
当a3=2,a7=-6时,
$\left\{\begin{array}{l}{{a}_{1}+2d=2}\\{{a}_{1}+6d=-6}\end{array}\right.$,解得a1=6,d=-2,
an=6+(n-1)×(-2)=-2n+8.

点评 本题考查等差数列的通项公式,解题时要认真审题,注意等差数列的性质的合理运用,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网