ÌâÄ¿ÄÚÈÝ
¸ø¶¨ÏÂÁÐÃüÌ⣺
¢ÙÔÚ¡÷ABCÖУ¬Èô
•
£¼0£¬Ôò¡÷ABCÊǶ۽ÇÈý½ÇÐΣ»
¢ÚÔÚ¡÷ABCÖÐ
=
£¬
=
£¬
=
£¬Èô|
|=|
-
|£¬Ôò¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
¢ÛÈôA¡¢BÊÇ¡÷ABCµÄÁ½¸öÄڽǣ¬ÇÒA£¼B£¬ÔòsinA£¼sinB£»
¢ÜÈôa¡¢b¡¢c·Ö±ðÊÇ¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶Ô±ßµÄ³¤£¬ÇÒa2+b2-c2£¼0£¬Ôò¡÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ £®
¢ÙÔÚ¡÷ABCÖУ¬Èô
| BC |
| CA |
¢ÚÔÚ¡÷ABCÖÐ
| AB |
| c |
| BC |
| a |
| CA |
| b |
| a |
| b |
| c |
¢ÛÈôA¡¢BÊÇ¡÷ABCµÄÁ½¸öÄڽǣ¬ÇÒA£¼B£¬ÔòsinA£¼sinB£»
¢ÜÈôa¡¢b¡¢c·Ö±ðÊÇ¡÷ABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶Ô±ßµÄ³¤£¬ÇÒa2+b2-c2£¼0£¬Ôò¡÷ABCÒ»¶¨ÊǶ۽ÇÈý½ÇÐΣ®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
¿¼µã£ºÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËã,ÓàÏÒ¶¨Àí
רÌâ£ºÆ½ÃæÏòÁ¿¼°Ó¦ÓÃ
·ÖÎö£º¢ÙÔÚÈý½ÇÐÎÖÐÒª·ÖÇåÊÇÄÚ½ÇC»¹ÊÇÆä²¹½Ç£®
¢ÚÇó³öÔò
•
=0£¬Åжϼ´¿É£®
¢Û¸ù¾ÝÕýÏÒ¶¨Àí
=
£¬A£¼B£¬Ôòa£¼b£¬¼´¿ÉÅжϣ®
¢Ü¸ù¾ÝÓàÏÒ¶¨ÀíÅжϼ´¿É£®
¢ÚÇó³öÔò
| b |
| c |
¢Û¸ù¾ÝÕýÏÒ¶¨Àí
| a |
| sinA |
| b |
| sinB |
¢Ü¸ù¾ÝÓàÏÒ¶¨ÀíÅжϼ´¿É£®
½â´ð£º
½â£º¶ÔÓÚ¢ÙÈô
•
£¼0£¬Ôò
•
£¾0£¬Ôò½ÇCΪÈñ½Ç£¬¡÷ABCÊDz»Ò»¶¨ÊǶ۽ÇÈý½ÇÐΣ»¹Ê´íÎó£®
¶ÔÓÚ¢Ú£®Èô|
|=|
-
|£¬ÔòÈô|
|2=|
-
|2£¬Ôò
•
=0£¬¡à¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬¹ÊÕýÈ·
¶ÔÓÚ¢Û¸ù¾ÝÕýÏÒ¶¨Àí
=
£¬A£¼B£¬Ôòa£¼b£¬sinA£¼sinB£¬¹ÊÕýÈ·£®
¶ÔÓڢܡßa2+b2-c2£¼0£¬ÓÉÓàÏÒ¶¨Àí¿ÉÖªcosC=
£¼0£¬¼´½ÇCΪ¶Û½Ç£¬¹ÊÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü
| BC |
| CA |
| BC |
| AC |
¶ÔÓÚ¢Ú£®Èô|
| a |
| b |
| c |
| a |
| b |
| c |
| b |
| c |
¶ÔÓÚ¢Û¸ù¾ÝÕýÏÒ¶¨Àí
| a |
| sinA |
| b |
| sinB |
¶ÔÓڢܡßa2+b2-c2£¼0£¬ÓÉÓàÏÒ¶¨Àí¿ÉÖªcosC=
| a2+b2-c2 |
| 2ab |
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü
µãÆÀ£º±¾ÌâΪÈý½ÇÐÎ֪ʶµÄÓ¦Óã¬ÕýÈ·ÀûÓÃÕýÓàÏÒ¶¨ÀíºÍÈý½Çº¯ÊýµÄ֪ʶÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬Êô»ù´¡Ìâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
º¯Êýy=sin£¨x-
£©µÄÒ»Ìõ¶Ô³ÆÖá¿ÉÒÔÊÇÖ±Ïߣ¨¡¡¡¡£©
| ¦Ð |
| 4 |
A¡¢x=
| ||
B¡¢x=
| ||
C¡¢x=-
| ||
D¡¢x=
|
ÏÂÁÐÃüÌâ´íÎóµÄÊÇ£¨¡¡¡¡£©
| A¡¢ÃüÌâ¡°Èôm£¾0£¬Ôò·½³Ìx2+x-m=0ÓÐʵÊý¸ù¡±µÄÄæ·ñÃüÌâΪ£º¡°Èô·½³Ìx2+x-m=0ÎÞʵÊý¸ù£¬Ôòm¡Ü0¡± |
| B¡¢¡°x=1¡±ÊÇ¡°x2-3x+2=0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ |
| C¡¢¶ÔÓÚÃüÌâp£º?x¡ÊR£¬Ê¹µÃx2+x+1£¼0£¬Ôò©Vp£º?x¡ÊR¾ùÓÐx2+x+1¡Ý0 |
| D¡¢Èôp¡ÄqΪ¼ÙÃüÌ⣬Ôòp£¬q¾ùΪ¼ÙÃüÌâ |
º¯Êýf£¨x£©=
£¨ax+a-x£©ºÍg£¨x£©=
£¨ax-a-x£©µÄÆæÅ¼ÐÔΪ£¨¡¡¡¡£©
| 1 |
| 2 |
| 1 |
| 2 |
| A¡¢¶¼ÊÇżº¯Êý |
| B¡¢¶¼ÊÇÆæº¯Êý |
| C¡¢f£¨x£©ÊÇÆæº¯Êý£¬g£¨x£©ÊÇżº¯Êý |
| D¡¢f£¨x£©ÊÇżº¯Êý£¬g£¨x£©ÊÇÆæº¯Êý |