题目内容
已知数列{an}的前n项和为Sn,点(n,
)在直线y=x+4上,数列{bn}满足:bn+2-2bn+1+bn=0(n∈N*)且b4=8,前11项和为154
(1)求数列{an},{bn}的通项公式
(2)令cn=
,数列{cn}前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值.
| Sn |
| n |
(1)求数列{an},{bn}的通项公式
(2)令cn=
| 3 |
| 2(an-2)(2bn+5) |
| k |
| 75 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由已知条件推导出Sn=n2+4n,由此能求出an=2n+3,n∈N*,由bn+2-2bn+1+bn=0,知{bn}为等差数列,由此求出bn=3n-4,n∈N*.
(2)cn=
=
(
-
),由此利用裂项求和法能求出Tn=
(1-
)=
,由此能求出使不等式Tn>
对一切n∈N*都成立的最大正整数k的值.
(2)cn=
| 3 |
| 2(an-2)(2bn+5) |
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 4 |
| 1 |
| 2n+1 |
| n |
| 4n+2 |
| k |
| 75 |
解答:
解:(1)由题意,得
=n+4,即Sn=n2+4n,
故当n≥2时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3,
∵n=1时,a1=S1=5,当n=1时,n+4=5,
∴an=2n+3,n∈N*,
又bn+2-2bn+1+bn=0,
∴{bn}为等差数列,
∴
=154,
∵b4=8,∴b8=20,∴d=
=3,
∴bn=b4+3(n-4)=3n-4,
即bn=3n-4,n∈N*.
(2)cn=
=
=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
)=
,
∵Tn+1-Tn=
-
=
>0,
∴Tn单调递增,
故(Tn)min=
,
令
>
,得k<12
,∴kmax=12.
∴使不等式Tn>
对一切n∈N*都成立的最大正整数k的值为12.
| Sn |
| n |
故当n≥2时,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3,
∵n=1时,a1=S1=5,当n=1时,n+4=5,
∴an=2n+3,n∈N*,
又bn+2-2bn+1+bn=0,
∴{bn}为等差数列,
∴
| 11(b4+b8) |
| 2 |
∵b4=8,∴b8=20,∴d=
| 20-8 |
| 8-4 |
∴bn=b4+3(n-4)=3n-4,
即bn=3n-4,n∈N*.
(2)cn=
| 3 |
| 2(an-2)(2bn+5) |
=
| 3 |
| 2[(2n+3)-2][2•(3n-4)+5] |
=
| 3 |
| 2(2n+1)(6n-3) |
=
| 1 |
| 2(2n+1)(2n-1) |
=
| 1 |
| 4 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 4 |
| 1 |
| 2n+1 |
| n |
| 4n+2 |
∵Tn+1-Tn=
| n+1 |
| 4n+6 |
| n |
| 4n+2 |
=
| 1 |
| (4n+6)(2n+1) |
∴Tn单调递增,
故(Tn)min=
| 1 |
| 6 |
令
| 1 |
| 6 |
| k |
| 75 |
| 1 |
| 2 |
∴使不等式Tn>
| k |
| 75 |
点评:本题考查数列的通项公式的求法,考查满足条件的最大正整数的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目