题目内容

10.等比数列{an}中,a3+a5=10,a4+a6=20
(1)求{an}的通项公式;
(2)设${b_n}={(-1)^n}{log_2}{a_n}$,求数列{bn}的前29 项和S29

分析 (1)设等比数列{an}的公比为q,由a3+a5=10,a4+a6=20,可得${a}_{1}({q}^{2}+{q}^{4})$=10,${a}_{1}({q}^{3}+{q}^{5})$=20,解得q,a1$\frac{1}{2}$.
(2)由(1)可得:an=2n-2.${b_n}={(-1)^n}{log_2}{a_n}$=(-1)n(n-2),b2n+b2n+1=(2n-2)-(2n+1-2)=-1.即可得出.

解答 解:(1)设等比数列{an}的公比为q,∵a3+a5=10,a4+a6=20,
∴${a}_{1}({q}^{2}+{q}^{4})$=10,${a}_{1}({q}^{3}+{q}^{5})$=20,解得q=2,a1=$\frac{1}{2}$.
(2)由(1)可得:an=$\frac{1}{2}×{2}^{n-1}$=2n-2
${b_n}={(-1)^n}{log_2}{a_n}$=(-1)n(n-2),
∴b2n+b2n+1=(2n-2)-(2n+1-2)=-1.
∴数列{bn}的前29 项和S29=1-1×14=-13.

点评 本题考查了等比数列的通项公式与求和公式、分组求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网