题目内容

设公差不为0的等差数列{an}的前n项和为Sn,且满足S5=3a5-2,a1,a2,a5依次成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=
1
anan+1
(n∈N*),求数列{bn}的前n项和为Tn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列通项公式和前n项和公式及等比数列性质,得5a1+10d=3(a1+4d)-2,(a1+d)2=a1(a1+4d),由此求出a1=1,d=2,从而能求出数列{an}的通项公式.
(2)由bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项求和法能求出数列{bn}的前n项和为Tn
解答: 解:(1)设等差数列{an}的公差这d,
则S5=5a1+10d,
∴5a1+10d=3(a1+4d)-2,
整理,得a1=d-1,
∵a1,a2,a5依次成等比数列,
a22=a1a5,即(a1+d)2=a1(a1+4d)
整理,得d=2a1
解得a1=1,d=2,
∴an=2n-1.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
)

=
n
2n+1
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网