题目内容
设不等式组
表示的平面区域为D.在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:几何概型
专题:概率与统计
分析:由题意,本题满足几何概型的特点,分别求出区域D的面积以及满足点到坐标原点的距离大于2的区域面积,由几何概型公式解答.
解答:
解:由题意,区域D的面积为:3×3=9,点到坐标原点的距离大于2的面积为9-
π×22=9-π;
由几何概型公式可此点到坐标原点的距离大于2的概率是得
;
故选B.
| 1 |
| 4 |
由几何概型公式可此点到坐标原点的距离大于2的概率是得
| 9-π |
| 9 |
故选B.
点评:本题考查了几何概型公式的运用;关键是求出满足此点到坐标原点的距离大于2的区域面积,利用几何概型公式解答.
练习册系列答案
相关题目
已知双曲线
-
=1(a>0,b>0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、1<e<
| ||||
B、e>
| ||||
C、e>
| ||||
D、1<e<
|
已知x与y之间的一组数据如表:
则y与x的线性回归方程
=bx+a必过点( )
| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 4 | 5 | 10 | 15 |
| y |
| A、(1,2) |
| B、(5,2) |
| C、(2,5) |
| D、(2,7) |