题目内容
已知集合A={x|(x+1)(x-2)<0},集合B={x|x<0},则A∩B=( )
| A、{x|-1<x<2} |
| B、{x|x<1} |
| C、{x|-2<x<0} |
| D、{x|-1<x<0} |
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,找出A与B的交集即可.
解答:
解:由A中不等式解得:-1<x<2,即A={x|-1<x<2},
∵B={x|x<0},
∴A∩B={x|-1<x<0},
故选:D.
∵B={x|x<0},
∴A∩B={x|-1<x<0},
故选:D.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
设a=logπ3,b=20.3,c=log2
,则( )
| 1 |
| 3 |
| A、a>b>c |
| B、a>c>b |
| C、c>a>b |
| D、b>a>c |
若M={x|-2<x<1},N={x|0<x<2},则M∩N=( )
| A、{x|x>1} |
| B、{x|0<x<1} |
| C、{x|-2<x<2} |
| D、{x|-2<x<1} |
复数1+
在复平面上对应的点的在( )
| 1 |
| i |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
函数y=a-x2+4x(a>1)的单调递增区间是( )
| A、(2,+∞) |
| B、(-2,+∞) |
| C、(-∞,-2) |
| D、(-∞,2) |