题目内容

11.如图,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,⊙O为ABC的内切圆,D,E,F分别为切点,O的半径为r,试用含a,b,c的代数式表示r.

分析 根据切线长定理,找出a,b,c,r的关系,可得答案.

解答 解:在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,⊙O为ABC的内切圆,D,E,F分别为切点,O的半径为r,
则BD=BF,CD=CE=r,AE=AF,
a=BD+CD=BD+r,
b=AE+CE=AE+r,
c=AF+BF,
a+b-c=2r,
∴r=$\frac{1}{2}$(a+b-c)

点评 本题考查的知识点是切线长定理,本题的结论是计算三角形内切圆半径的重要途径,建议牢记.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网